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Linear Stability of the Compressible Reacting Mixing Layer

D. S. Shin* and J. H. Ferzigert
Stanford University, Stanford, California 94305

This paper investigates the linear stability of mixing layers with special emphasis on the effects of heat release
and compressibility. The results show that multiple supersonic modes exist for both nonreacting and reacting
flows when the disturbance phase velocity is supersonic relative to the freestream. These supersonic modes
become less unstable with increasing Mach number but more unstable with increasing heat release. The most
unstable supersonic modes are three-dimensional (oblique) for nonreacting flows but two-dimensional for
reacting flows. The structure of the disturbed flows suggests that the supersonic modes do not enhance mixing
between the fuel and oxidizer. Finally, the convective Mach number does not appear to be a universal parameter

for characterizing compressibility in reacting flows.

I. Introduction

EACTING free shear layers occur in many systems, in-
cluding gas turbine combustors and rockets. Chemical
reaction can occur only when the reactants are molecularly
mixed. However, short residence times require efficient mix-
ing between the fuel and oxidizer. This is especially important
in air-breathing ramjets. Fast mixing requires the flow to be
vigorously turbulent, which requires the laminar flow to be
unstable. Hence, understanding of the stability characteristics
of reacting free shear layers may lead to techniques for en-
hancing mixing or controlling the flow. Stability analysis can
also predict some characteristics of the turbulent reacting mix-
ing layer. The conclusions may be expected to apply, with
quantitative modifications, to other shear flows, e.g., jets.
Stability of the compressible mixing layer has received less
study than the incompressible flow. Gropengiesser! carried
out inviscid spatial-stability calculations for the compressible
mixing layer and found that compressibility stabilizes the
flow. He also found that the most unstable modes are three-di-
mensional at high Mach numbers. Sandham and Reynolds?
solved the linearized inviscid compressible stability equation
and found multiple unstable modes. They also found that
three-dimensional effects are important at high Mach num-
bers, which was confirmed experimentally by Clemens and
Mungal.? Jackson and Grosch* carried out inviscid spatial
calculations and found two sets of unstable modes if the Mach
number exceeds a critical value. They also studied the effect of
heat release on the spatial stability of supersonic reacting
mixing layers using analytical velocity profiles and the flame-
sheet concept.’ They found that sufficient heat release could
make the flow absolutely unstable. In the subsonic case, Ma-
halingam et al.® found that heat release stabilizes coflowing
chemically reacting jets. Shin and Ferziger’ showed that in the
low-Mach-number reacting mixing layer, the stability proper-
ties are sensitive to the mean flow profiles, so it is important
to use the correct laminar profiles in the stability analysis.
Outer modes are found in low-speed flows when the heat
release is significant and become dominant at large heat re-
lease.
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This paper considers a plane mixing layer in which the fuel
and oxidizer are initially unmixed. The chemistry is finite-rate,
single-step irreversible reaction with Arrhenius kinetics. Since
earlier work’ showed the importance of using correct laminar
profiles rather than assumed analytical ones, laminar profiles
obtained by solving the compressible boundary-layer equa-
tions are used as inputs to the linear-stability analysis. To
reduce the parameter space, we considered the cases in which
the ratio of the speed of the slow stream to that of the fast
stream is 0.5 and only spatially developing layers. We use
nondimensional adiabatic flame temperature T,; to express
the amount of heat release from combustion. For a given Ty,
the actual temperature rise in high-Mach-number flows may
be higher than in low-Mach-number flows due to viscous
dissipation. How best to express the temperature rise from
combustion and viscous dissipation in a single parameter is
still an open question. Finally, we consider only convectively
unstable cases, as in the previous paper.’

II. Linear Disturbance Equation

In free shear flows, viscosity damps growing disturbances.
Even though the large values of heat release in reacting flows
will increase the viscosity, the inviscid analysis of low-speed
reacting mixing layers showed good agreement with experi-
ments and numerical simulations.”® Thus, the simpler inviscid
stability problem, which yields an upper bound on the growth
rate, will be considered exclusively in this study. To simplify
the stability analysis, we assume that the laminar flow is
parallel, i.e., that its variation is entirely in the direction
normal to the flow. The mean pressure is assumed constant.
All variables are taken to be sums of their laminar values and
small perturbations of traveling wave form. Thus, all flow
variables can be represented as

Sy, 2 O =FO)+f (6, 2 1)
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where f(») is the laminar profile of a quantity, f depends only
on the y coordinate, and o and 8 are wave numbers in the
streamwise (x) and spanwise (z) directions, respectively, and w
is the frequency. All dependent variables are normalized by
their values on the high-speed side (subscript 1). The relation
between the wave numbers and the propagation angle of dis-
turbance relative to the x direction is

tan 8 = B/«, 3)
where «, is the real part of «. Since the disturbances do not
grow in z, the wave number 3 is real. Because a spatial
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problem is considered here, w is real and « is allowed to be
complex. The amplification rate is — o;.

The perturbation equations are derived by linearizing the
Euler equations, which are obtained by dropping the diffusion
terms from the Navier-Stokes equations. Substituting Eq. (2)
into these equations and neglecting the products of distur-
bances yields the disturbance equation for the pressure:
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where @, 5, and T are the mean velocity, density, and temper-
ature, respectively; and a prime denotes differentiation with
respect to y. Here, v is the specific heat ratio and M, is the
Mach number of the upper stream. The terms [RXN1] and
[RXN2] represent the effect of density variation due to chem-
ical reaction and compressibility on the instability; they are

given in the Appendix. Note that Eq. (4) is a homogeneous

second-order ordinary differential equation.

Equation (4) requires two boundary conditions. These re-
quire the pressure perturbation to be bounded as |y | — oo.
This can be made more precise by considering the asymptotic
form of the solutions of Eq. (4). Asy — =+ oo, #’ and [RXN1]
become negligible and [RXN2] becomes — T(y — 1)/v. Equa-
tion (4) then reduces to

b"-qh=0 &)

where
2
g2 = (02 + ) - Tt (= o? ©)

Note that g2 can be positive, negative, or complex. This will
play an important role below. Far from the shear layer, the
pressure must behave like
B — exp (2qy) asy — Foo Y]
The asymptotic behavior of the disturbances can be inferred
from this result. The nature of the disturbance can be de-
scribed in terms of the relative Mach numbers, M,; (i = 1, 2),
which are defined as the Mach numbers of the disturbances in
the direction of the wavevector («, ) relative to freestreams
i(i = 1 denotes the upper stream and i = 2, the lower stream):

_ aM(c — 1)
r1 = (az + Bz)l/z )

aMi(c — i)
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where ¢ is the phase velocity of the disturbance. When the
magnitude of a relative Mach number is less than unity, the
instability wave is said to be subsonic with respect to that
boundary; when it is greater than unity, it is said to be super-
sonic with respect to that boundary. At the zeros of g2, the
instability waves are sonic (| M, | =1). We define ¢, as the
phase speed of a disturbance that is sonic with respect to the
upper stream and ¢; as the corresponding speed with respect to
the lower stream:

(aZ + BZ)‘/:
oM, ’
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c =1+ oM, ®

c,=1-

The relative Mach number of the most unstable mode was
called the convective Mach number by Mack.? The quantity ¢q
is real only for neutral subsonic disturbances; for neutral
supersonic disturbances it is purely imaginary; in all other
cases it is complex. When the disturbances are subsonic with
respect to either freestream, Eq. (7) must be satisfied so that

the disturbances remain bounded at infinity. These modes are
similar to the ones arising in incompressible stability theory.
For supersonic disturbances, the instability waves are oscilla-
tory as |y | — o and move along the constant phase lines

X +0zxqy —owt=0 10)

Supersonic neutral disturbances may be classified as incoming
(g; >0) or outgoing (g; <0) for the upper freestream; the signs
are reversed for the lower freestream. Only outgoing waves are
acceptable; incoming waves must be rejected. Setting the am-
plitudes of the incoming waves to zero provides the required
boundary conditions.

An iterative method based on the shooting and Newton-
Raphson methods is used to solve Eq. (4). To begin, a guess at
the eigenvalue is made. For a spatial analysis, w is specified
and « is guessed. Given the eigenvalue, p for large y is given by
Eq. (7). The computation starts at some large value of y on
each side; the starting value of y must be within the range of
y for which laminar flow is tabulated but large enough for the
solutions to be essentially constant. Then we integrate Eq. (4)
from both freestreams toward the centerline of the mixing
layer. We used the subroutine ODE? for the integrations with
an error control parameter of 10~7. At the centerline, y =0,
the values of § and p’ computed by integration from the
upper stream, p, (0) and p | (0), are compared with the values
computed by integration from the lower stream, p . (0) and
P2 (0). If they match, the process has converged; if not, a new
eigenvalue is chosen by the Newton-Raphson method and
iteration continues until the eigenvalue increment is reduced to
10-6. We used double-precision arithmetic, which allowed
computation of even weakly amplified unstable modes at high
Mach numbers.

III. Results

A. Possibility of Noninflectional Supersonic Modes

In compressible flows, the necessary and sufficient condi-
tion for the existence of a neutral subsonic wave is (&'/
T)' = 0. The location of the zero is called the generalized
inflection point. The proof of sufficiency given by Lees and
Lin!! requires the relative Mach number to be subsonic at the
generalized inflection point. We derived a similar criterion for
low-Mach-number reacting flows and found that nonreacting
incompressible mixing layers have an inflection point, whereas
reacting mixing layers with sufficient heat release have three.”

The existence of multiple unstable modes at supersonic rela-
tive Mach numbers was first discovered in the extensive nu-
merical work of Mack.!? At about the same time, Gill'? found
multiple solutions in his study of ‘‘top hat’’ jets and wakes.
The modes that they found do not require a generalized inflec-
tion point. The reason for these multiple modes can be under-

. stood by examining the two-dimensional inviscid stability

equation for the pressure disturbance, Eq. (5). Using the defi-
nition of the relative Mach number, M, [Eq. (8)], Eq. (5) can
be written

P’ =21 -MHp =0 an

Using Eq. (2), we may rewrite Eq. (11) as a partial differential
equation

¥p’ p
+(1-M?)——=0
P ( ") o (12)

’

where p’ is the pressure disturbance. When M? <1, Eq. (12)
is elliptic, and the unique solution is connected with the gener-
alized inflection point.!® However, when M?>1, Eq. (12)
becomes hyperbolic, and  many solutions can satisfy the
boundary conditions at y = =+ o. Mack® found similar behav-
ior in compressible boundary layers.

Like nonreacting compressible boundary layers,® nonreact-
ing mixing layers have one generalized inflection point even at
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high Mach numbers. Figure 1 shows that the nonreacting
mixing layer at M, = 5 (M, = 2.5) has one generalized inflec-
tion point, whereas the reacting mixing layer at the same Mach
number with T,; = 4 has three such points as does the low-
speed reacting flow.” In this case, M,, the convective Mach
number defined by Papamoschou and Roshko,!* is 1.25. The
convective Mach number will be discussed further below.
Even though the nonreacting mixing layer has just one gener-
alized inflection point, multiple unstable modes may exist
when a region of the flow is supersonic relative to the distur-
bance phase velocity. In other words, supersonic unstable
modes can exist in the absence of a generalized inflection
point.

B. Effect of Mach Number and Heat Release

Figure 2 shows the amplification rates and phase speeds as
functions of frequency for M, = 5 (M, = 1.25). The nonreact-
ing mixing layer (7,; =1) has two unstable modes even
though it has but one generalized inflection point. One is
supersonic relative to the lower freestream and the other is
supersonic relative to the upper freestream. We call the former
the fast mode and the latter the slow mode in accord with their
phase speeds. Each has nearly the same growth rate but the
fast mode is more broadband. Neither resembles the vorticity
modes of boundary layers and low-speed reacting mixing lay-
ers, which require generalized inflection points to be unstable,
and are, of course, subsonic. Experiments'>-!7 have observed
the slow and fast modes that have lower and higher propaga-
tion velocities than the mean convection velocities, although
we may not compare turbulent experiments with the linear
analysis directly.

The reacting mixing layer (7, = 4) also has two supersonic
unstable modes, even though it has three generalized inflection
points in Fig. 1. They are outer modes and their asymptotic

phase speeds shown in Fig. 2b are very close to the laminar -

velocities at the outer generalized inflection points in Fig. 1,
even though the mean velocities at the generalized inflection
points are supersonic relative to one of the freestream veloci-
ties. This suggests that the instability modes in reacting flows
may be continuations of the inflectional modes of low-Mach-
number flows. The outer modes have twice the growth rate of
the corresponding modes of the nonreacting flow; the fast
mode is slightly less amplified and more broadband than the
slow mode. Figure 2b shows that the phase velocity of the fast
mode approaches an asymptotic value close to the upper
freestream speed as the frequency increases; the slow mode
phase speed asymptotes to the speed of the lower freestream.
Increasing the adiabatic flame temperature raises the speed of
the fast mode and reduces the speed of the slow mode, as in
low-speed reacting mixing layers.’

To study the effect of Mach number on the type of distur-
bances produced, we give the phase speeds of the most un-
stable modes, c,, as functions of Mach number in Fig. 3 for

(U

“1.25 1 : it L L ! s . L " : 1
-35 -3 -25 -2 -15 -1 ~05 O 0.5 1 15 2 5 3 as

Fig.1 (pi’)’ in the laminar flow. My=5, Ta=1, —, Tga=1; ==,
Taa=4.

0.0200 T T T T T T T T T T T T T

0.0175

©.0150

0.025

0.0100

—a;

0.0075

0.0050

0.0025

0.0000 1 L : . . ) ) L L L ) L !
© o1 02 03 04 05 06 07 08 09 I U 12 13 14
. a) ‘ w,
1 T T T T T T T T T T T T T
095 | ]
osgo R

Cr

L A . 1 2 . L "
[} 0! 02 03 04 05 06 07 08 09 1 1t 12 13 14

b) Wy

Fig.2 The multiple instability modes in the compressible flow: a)
growth rate, and b) phase velocity. M1 =5, T»=1, §=0. , slow
mode (Taq = 1); --—, fast mode (T4 =1); — - —, slow mode (T;q =4);
------ , fast mode (Tpq =4).
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Fig.3 Phase speeds of the most unstable modes vs Mach number.
T>=1, 8=0. 1, center mode (7,4 =1); 2, stow mode (7,4 =1); 3, fast
mode (Tzq =1); 4, center mode, (T,q =4); 5, slow mode, (T, =4);
and 6, fast mode, (Tq =4).

both nonreacting (T,; = 1) and reacting (T,; = 4) flows. The
¢, curve represents the phase speed of a disturbance that is
sonic with respect to the upper stream, and the ¢; curve repre-
sents the corresponding speed with respect to the lower
stream. When the relative Mach number is subsonic
(I M, | <1, region I), the nonreacting flow has only center
modes (Kelvin-Helmholtz modes) that travel at the average
speed of two streams. As the Mach number increases, the
center modes become supersonic with respect to both streams
(| M,; 2| >1, region III); they also become less unstable and,
at high enough Mach number, they become stable. At super-
sonic relative Mach numbers, unstable modes that are inde-
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pendent of the generalized inflection points arise as shown in
Fig. 2. For the nonreacting flow, Fig. 3 shows that the fast
mode is subsonic with respect to the upper stream and super-
sonic with respect to the lower stream (| M, | <1, | M, | >1,
region II) and the slow mode is supersonic with respect to the
upper stream and subsonic with respect to the lower stream
(| Mn| >1,| M, | <1, region IV). The phase speeds of the
outer modes approach the freestream velocities as the Mach
number increases. For the reacting flow with 7,4 = 4, three
inflectional unstable modes exist at low Mach numbers. As the
Mach number increases, the phase speeds of the outer modes
become supersonic. The center mode also becomes supersonic
at high Mach numbers. The outer modes at high Mach num-
bers are continuations of the inflectional modes of low-Mach-
number flows.

Now we study the effect of the Mach number on the maxi-
mum growth rates.of two-dimensional modes. Figure 4 gives
results for T,;, = 1 and 4. Only the slow mode growth rates are
given for readability; the fast mode growth rates are almost
identical. First consider the unheated flow (7,4 = 1). As has
been demonstrated by Groppengiesser! and others,>* the
growth rate of the center mode decreases dramatically as the
Mach number increases. In the high supersonic regime, the
growth rate is miniscule compared to its incompressible value.
At supersonic speeds, a second set of modes (outer modes)
becomes unstable. The growth rate of these modes are rela-
tively insensitive to the Mach number and, for a sufficiently
high Mach number, are much larger than the growth rate of
the center mode. However, they are small compared to the
growth rate of the center mode at low speeds. The outer modes
should be the predominant instabilities at supersonic Mach
numbers.

Next, consider the reacting flow (7T,; =4). In low-speed
reacting flows,” the low density in the center of the shear layer
reduces the growth rate of the center mode. Figure 4 shows
that the growth rate of this mode is further reduced as the
Mach number increases and is always smaller than the growth
rate of the corresponding cold flow mode. When 7, is large
enough, outer modes arise in the low-speed reacting flow even
at low Mach numbers. For the case shown here (T, = 4), the
outer modes are slightly less unstable than the center mode at
M, = 0; this situation reverses at higher heat release. The
growth rate of the outer modes falls off much more slowly
than that of the center mode with increasing Mach number
and, for the heat release used here, they dominate for .

. M;>2.5. At M| >4, the center mode is stable.

Figure 5 shows the maximum growth rates as functions of
adiabatic flame temperature for a high-speed flow (M; = 5) as
well as a lower-speed flow (M, = 1). At M = 1, as heat release
increases, the maximum amplification rate of the center mode

0.14 . . , -

0.12
0.1

0.08

~Uimaz

0.06

0.04

0.02

0 2 4 6 8 10
M

Fig.4 Maximum growth rates vs Mach number. 7>=1, 8=0. 1,
center mode, (Tgs=1); 2, slow mode (T,4=1); 3, center mode,
(Toq =4); and 4, slow mode (T4 =4).
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Fig. 5 Maximum growth rate vs adiabatic flame temperature. 7 =1,
=0, —, Mj=1 (center mode); -- - - - , My =1 (slow mode); — - —,
Mi=5 (slow mode).

decreases rapidly; its value in the cold flow is 0.118, while for
T.a = 8itis 0.018, or 15% of the cold flow value. The ampli-
fication rates of the outer modes change very little as heat
release increases. Consequently, at high heat release, the outer
modes have larger amplification rates than the center mode.
For T,, = 8, the outer modes have almost twice the amplifica-
tion rate of the center mode. Flows with high heat release
(T,s >5) should be unstable to the outer mode, but heat re-
lease stabilizes the flow at M, = 1 (M, = 0.25).

At M, =5 (M, = 1.25), only the supersonic outer modes are
unstable. As heat release increases, their maximum growth

~ rates increase. The maximum growth rate of the slow outer

mode of the nonreacting flow is 0.0095, while for T,,; = 8 it is
0.027, or about three times as large. Reacting experiments of
Hall'” showed that the shear-layer thickness increased by 10%
with increasing heat release (7,4 = 2). According to our calcu-
lations with the same T,,, the growth rate increases by about
20%. Thus, there is just a small qualitative difference between
our predictions and his experiments. This might be due to
different Reynolds numbers and/or initial profiles. We take
this as evidence that heat release destabilizes the supersonic
flow in contrast to the low-speed case.

C. Three Dimensionality

Sandham and Reynolds? reported that the most unstable
mode in compressible flows becomes three-dimensional when
M_.>0.6. In this section, we study the effect of heat release
(T,; =4) on the obliquity of the most amplified mode in
high-speed flows (M = 5).

Figure 6 shows the maximum growth rates and phase speeds
for both nonreacting (7T,; = 1) and reacting (7,; = 4) flows.
Only the slow mode growth rates are given for readability; the
fast mode growth rates are almost same. In a nonreacting
mixing layer, for angles less than about 37 deg, the outer
modes are dominant and the maximum growth rates change
little with angle. They are supersonic unstable modes that have
no connection with the generalized inflection points. How-
ever, when the angle is greater than 37 deg, the outer modes

" disappear and the center mode begins to dominate. The reason

for the transition from outer mode dominance to center mode
dominance can be understood by examining the relative Mach
number, M, [Eq. (8)]. For waves propagating at angle @ rela-
tive to the x direction, Egs. (8) and (9) become

MI(C — ﬂz)COS 0

M,; = Mi(c — 1)cos 8, M, = T 13)
2
1 T}
=1-—", =i+ —>— 14)
Cu M, cos 8 ! 2 M, cos 0
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where c is the phase velocity, w/a. ¢, are the phase speeds of
disturbances that are sonic with respect to the upper and lower
streams, respectively (| M,;,| = 1). ¢, are plotted in Fig. 6b
for M; = 5. Because the relative Mach numbers are functions
of the propagation angle, there is a possibility of transition
from supersonic (regions I1, III, and IV) to subsonic (region I)
disturbances as the angle increases. ¢, = ¢; defines the smallest
transition angle and, for M| =5, it is about 37 deg. The center
modes in Fig. 6b above 37 deg are subsonic relative to both
free streams.

Sandham and Reynolds? found that, for the most amplified
disturbance,

M, cos §=0.6 B ¢

This relation predicts the most unstable mode to be at 62 deg
for M, =1.25 (M; = 5), which is very close to the angle of
maximum instability of the center modes (65 deg). The relative
Mach number for the most unstable center mode is 0.53 and is
subsonic. Note that the maximum growth rate of oblique
center modes is much greater than the growth rate of two-di-
mensional outer modes. Therefore, the most unstable mode is
oblique and subsonic for nonreacting flow at M, = 5.

At T,,; = 4, even though the relative Mach number becomes
subsonic with increasing obliquity, the center mode is stabi-
lized by the heat release and only the outer modes are ampli-
fied. The latter are inflectional modes whose maximum ampli-
fication rates decrease as the obliquity increases. Therefore
héat release makes the dominant mode two-dimensional even
in the high-Mach-number regime. The three-dimensional
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Fig. 6 a) Maximum growth rate vs oblique angle and b) correspond-
ing phase velocity. Mi=5 (M;=1.25), Th=1. 1, Toa=1 (center
mode); 2, Toq =1 (slow mode); 3, T,g =1 (fast mode); 4, Ty =4 (slow
mode); and 5, T,q =4 (fast mode).

modes which dominate in the nonreacting case are stable and
Eq. (15) is apparently not applicable in reacting mixing layers.

D. Effect of Damkohler Number and Equivalence Ratio

To see the effect of the Damkoéhler number Da on the
growth rates of reacting mixing layers, we studied the maxi-
mum growth rates of the unstable modes as functions of
Damkohler number. Here, the Damkdhler number is defined
as the ratio of the convective flow time to the chemical reac-
tion time in the laminar flow

60) WFVF E -1
Da =—/ ______B—(up+yo—1) —_— 16
‘3 [W;FW;)O o exp( RT1>] {9

U
where §,, is the initial vorticity thickness, Wg, o the molecular
weight, and g, o the stoichiometric coefficients of the fuel and
oxidizer, respectively. The quantity E is the activation energy
of the reaction, B is the frequency factor, and R is the univer-
sal gas constant.

Figure 7a shows the temperature profiles with the same inlet
profiles and different Damkohler numbers at M; =5 and
T,; = 4. These profiles are compared at a particular nondi-
mensiona! downstream distance x. As expected, more heat is
released as Da increases. At low Damkohler numbers; the heat
release increases rapidly with the speed of the chemical reac-
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Fig. 7 Effect of Damkohler number. M;=S, Ta=1, Tgu=4,8=0:
a) temperature, —, Da =0.2; ---—-, Da =0.5; — - —, Da=2; -----,

Da =1000; and b) maximum growth rate.
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tion and the behavior is said to be reaction limited. At high
Damkohler numbers, heat release increases little and the tem-
perature profile is nearby independent of Da; the growth is
diffusion limited. The maximum growth rates shown in Fig.
7b decrease considerably until Da = 0.5, after which they
rapidly approach their asymptotic high Da value. Increasing
Damkdéhler number stabilizes the flow at low Damkohler
numbers, but has little effect (it is slightly destabilizing) at
high Damkdhler numbers. These results show that the flame-
sheet model is valid for Da = 0.5 but finite rate chemistry
needs to be considered at low Damkghler numbers (Da <0.5).

The equivalence ratio of a diffusion flame can be defined by

—_ (YF/ YO)real
(Yr/ Yo)idea

where Yy, Y, represents the mass fractions of the fuel oxidizer
in the freestreams. We assume that (Yz/Yo)igea = 1. If ¢>1,
the mixture is fuel rich, while if ¢ <1 it is fuel lean. Here we
study the effect of equivalence ratio on the stability of high-
speed reacting flows; three equivalence ratios, ¢ = 0.5, 1, 2,
are used at T,; =4 and Da = 10. The upper stream contains
" the fuel, and the lower stream, the oxidizer. Figure 8 shows the
maximum growth rates as functions of the Mach number for
various equivalence ratios. The effect of equivalence ratio is
large at low Mach numbers. Because any deviation from stoi-
chiometric conditions reduces the total heat release, the stoi-
choimetric case (¢ = 1) has a lower growth rate than the others
(¢ = 0.5, 2). The fuel-lean case (¢ = 0.5) is the most unstable
one up to M; = 3.5. At high Mach numbers, the growth rate
for the stoichiometric case is larger than the others because
heat release now destabilizes the flow (see Sec. I1IB). How-
ever, the change in growth rates at high Mach numbers is
smaller than at low Mach numbers.

E. Contours

From the eigenfunctions of the most unstable modes and
the mean flow, a qualitative approximation to a typical flow
variable can be calculated. We plotted selected contours of the
flow variables. Only the slow supersonic mode is shown; the
fast supersonic mode can be obtained by reflection. Because
the action of the slow mode is concentrated in the lower part
of the mixing layer, it disturbs this region. Figure 9 shows the
contours of the flow variables produced by the supersonic
slow mode for the nonreacting (T,; =1) flow at M, =5
(M, = 1.25). The vorticity divided by density in Fig. 9a is quite
different from the incompressible flow structure;? it shows a
single clockwise core on the slow side of the layer. Sandham
and Reynolds'® used the compressible vorticity equations to
explain the reduced growth rate in compressible mixing layers.
Along these lines, we checked the dilatational and baroclinic
terms. In the region near the vortex, both the dilational and
baroclinic terms are negative, and may act to reduce the

—dimax

M

Fig. 8 Effect of equivalence ratio on maximum growth rate. Tys =4,
»=1,8=1. 0, $=0.5; o, d2=1; &, $p=2.
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Fig. 9 Contour plots from linear eigenfunctions of the nonreacting
flow (slow mode). M1=5 (M, =1.25), T» =1, Toa =1, §=0: a) vortic-
ity/density (max=8.58x10-4, min= —0.367); and b) pressure
(max = 1.05, min = 0.95).

growth of the two-dimensional instability. The pressure con-
tours in Fig. 9b show clearly the radiative nature of the super-
sonic mode. On the lower side of the layer, which is subsonic
relative to the disturbance, the pressure distribution is similar
to what is found in an incompressible flow. However, the
upper side, which is supersonic relative to the disturbance,
shows compression (solid lines) and expansion (dashed lines)
waves propagating to infinity. The radiation of wave energy to
infinity is probably a major cause of the decreased growth
rate.

Figure 10 gives contours produced by the supersonic slow
mode for the reacting flow (7,; =4) at My =5 (M, = 1.25).
Figure 10a shows that the extrema of the vorticity divided by
density lie below the center of the layer. The dilatational and
baroclinic terms are both negative near the vortex, and tend to
inhibit the growth of the two-dimensional instability. The
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Fig. 10 Contour plots from linear eigenfunctions of the reacting flow (slow mode). M =35 (M, =1.25), =1, Tad¥4, 8=0, Da =1.0:- a)
vorticity/density (max=2.34x10-4, min= —0.564); b) pressure (max=1.062, min=0.938); ¢) fuel (max=1.0, min=0.0); and d) oxidizer

(max =1.0, min=0.0).

pressure contours in Fig. 10b exhibit the radiation of compres-
sion (solid line) and expansion (dashed line) waves on the
upper side. Figures 10c-d show the mass fractions of the
reactants. Because the fuel occupies the upper part of the layer
and the oxidizer the lower part, the slow mode principally
affects the oxidizer. The fuel distribution is hardly perturbed
and the slow mode does not increase mixing between the
reactants very much.

In Sec. IIIC, we showed that the most unstable mode in a
M; =5 (M, = 1.25) nonreacting flow is a center mode with
oblique angle § = 65 deg and that it is subsonic relative to both
freestreams. To check the subsonic nature of the oblique
center mode, we plot contours of pressure produced by this
mode in Fig. 11. The pressure contours are similar to the ones
of the subsonic flow and show no propagation of pressure
waves toward the boundaries. This flow is similar to a sub-
sonic flow in many ways.

F. Convective Mach Number

Use of the convective Mach number has been suggested as a
way to collapse growth-rate data onto one curve.'%1%20 The
best known definition of M, is based on the velocity of a frame
convecting with large structures of the mixing layer.!* By
assuming the existence of a stable stagnation point of the kind
found in incompressible flows, that the dynamic pressures on
the two sides of the stagnation point are equal and that the
process is isentropic, Papamoschou and Roshko!# derived an
expression for the convective Mach number

M1~ i)

M.=M,=M,——=— 18) -
=M T a8

Papamoschou and Roshko'# suggested that the growth rate of
a compressible shear layer normalized by the growth rate of an
incompressible shear layer might be a function solely of the
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Fig. 11 Pressure contours of the most unstable oblique center mode
(0=65 deg), Max=1.018, min=0.982. M;=5 (M.=1.25), T»=1,
Toa=1.

convective Mach number for a wide range of velocity and
temperature ratios. They showed that the normalized growth
rate in turbulent flows decreases with increasing convective
Mach number. Recently, Ragab and Wu? studied the influ-
ence of the velocity ratio on stability characteristics of a com-
pressible shear layer and found that the isentropic convective
Mach number does correlate compressibility effects on the
growth rate.

A second definition takes the convective velocity to be the
phase velocity of the most unstable mode according to linear-
stability theory. This was proposed by Mack® for compressible
boundary layers and later used by Zhuant et al.! for com-
pressible shear layers. The convective Mach number for the
two freestreams can be written as

M(c, — ip)
M. =Ml - c), My = —In 19
where c, is the phase velocity of the most unstable mode. The
convective Mach numbers of Eqs. (18) and (19) are identical
when the dominant mode is the center mode and T, =1,
because the large structures then move with the phase speed of
the center mode. When the outer modes dominate due to heat
release or compressibility, the isentropic convective velocity
remains the center mode phase velocity but the convective
velocity based on the most unstable mode becomes the phase
velocity of the outer modes, and, therefore, convective Mach
numbers from Egs. (18) and (19) become different. Zhuang et
al.,' who used the convective Mach number based on the
most unstable mode, compared their results with those of
Ragab and Wu?® who used the isentropic convective Mach
number. Even though the difference in supersonic convective
Mach numbers is not small, the comparison showed good
agreement in the normalized growth rates because they change
little at supersonic convective Mach numbers.

To see whether convective Mach numbers can correlate
shear-layer compressibility in reacting mixing layers, we nor-
malize maximum growth rates for various temperature ratios
and adiabatic flame temperatures by incompressible growth
rates at the same velocity and temperature ratios and adiabatic
flame temperatures to isolate the effect of compressibility:

- aimax(Mc, i, T21 Tad)
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Me)=— Qimax (0, 1, T3, Tpq)
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Fig. 12 Normalized maximum growth rates vs convective Mach
number for reacting flows: a) isentropic convective Mach number [Eq.
(17)]; and b) convective Mach number based on the most unstable
mode [Eq. (18)]. #2=0.5,8=0.1, T2 =1, Toa =1; 2, T2=0.5, T,u = 4;
3, n=1, Tua=4 4, I2=2, Taa =4; 5, T2=1, Taa =8.

Papamoschou and Roshko!* used the same normalized growth
rates without the chemical reaction. Figure 12 shows the nor-
malized maximum growth rates vs the two convective Mach
numbers. The results show that the growth rates do not col-
lapse with either convective Mach number. Thus, convective
Mach number does not appear to be a universal parameter
expressing shear-layer compressibility effects in this sense.

IV. Conclusions

In this work, we considered the inviscid stability of com- |
pressibie reacting mixing layers. The calculations are based on
laminar flow profiles generated by solving the compressible
boundary-layer equations with finite-rate chemistry. We
found that supersonic unstable modes may exist in the absence
of a generalized inflection point, provided that a region of
laminar flow is supersonic relative to the disturbance phase
velocity. The growth rate decreases with increasing Mach
number. At supersonic Mach numbers, the outer modes dom-
inate. Heat release stabilizes low-speed flows but destabilizes
high-speed flows. However, the growth rates are small com-
pared to the compressible cold flow value. For nonreacting
supersonic flows at M, >0.6, the most unstable modes are
oblique center modes that are subsonic relative to both
freestreams. For reacting flows with 7,; > 3, the most unstable
modes are two-dimensional outer modes even at high Mach
numbers. The radiative nature of supersonic disturbances is
demonstrated by the pressure contours; the radiation of en-
ergy is one reason for the decreased growth rates. Supersonic
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disturbances do not mix the reactants very well because they
are largely confined to one side of the flow. For reacting
flows, the growth rates normalized by the corresponding in-
compressible growth rates are not functions of the convective
Mach number alone, so the latter cannot be used as an overall
measure of shear-layer compressibility.

Appendix: Representation of [RXN1] and [RXN2]

The terms [RXN 1] and [RXN?2] of Eq. (4) may be written as
ratios of determinants:

A C B A C E
H F G H F J
N M -L N M O
[RXN1] = , [RXN2) = ————
A C -D A C -D
H F -1 H F I
N M -K _ N M -K

The elements of these determinants are

A = ip((att — w) + Da p*yp exp [ —B'<%~ 1>]

-
(it — w)

C = Da p*yF exp [ —B’(—— 1)]
P - = ’ [)2 - = ’ 1
D =Da [—-;—Zypyoﬁ —ZTTypyo exp | — B TT—I

1
E =2Da p’PeJo €xp [ -B’ <TT— 1)]

Wovo _,_ 1 )
= i5(odi — xp| -8 [=—1 l
F =ip(an w)+DaWproep B 7

N]Ii-‘

-
(aft — w)

Wovo | P _ _ ., P . . (1
I =Da 00[%)@06 —ZTTypyo exp| -8 7.—1

WFVF
J=E
I)Z 52 ]
— e lviT — —_ — V) P 2=y
K = iyplait — w) — Da Woon [7,2 Yol 7 Yo
1
-B'{=—1
o] -5 (3-1)]
I —iT’ —ip(y—1)
T (el w)  PHod - w)
a2 [_ ,<1_1>]
M = Da Wprp Vr €Xp 8 T
¢ e+
= -g'l=-1
N = Da Wplfpp Yo €XP 8 7

O=i(y—1) (ali— ) + waWL 2 VEPo

o o)

where 8’ and Q represent the nondimensional parameters of
activation energy and heat release, respectively. The terms W
and » represent, respectively, the molecular weight and stoi-
chiometric coefficient of species.
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